Extensions 1→N→G→Q→1 with N=C22×S3 and Q=Q8

Direct product G=N×Q with N=C22×S3 and Q=Q8
dρLabelID
C22×S3×Q896C2^2xS3xQ8192,1517

Semidirect products G=N:Q with N=C22×S3 and Q=Q8
extensionφ:Q→Out NdρLabelID
(C22×S3)⋊1Q8 = (C22×S3)⋊Q8φ: Q8/C2C22 ⊆ Out C22×S396(C2^2xS3):1Q8192,232
(C22×S3)⋊2Q8 = (C22×Q8)⋊9S3φ: Q8/C2C22 ⊆ Out C22×S396(C2^2xS3):2Q8192,790
(C22×S3)⋊3Q8 = C6.512+ 1+4φ: Q8/C2C22 ⊆ Out C22×S348(C2^2xS3):3Q8192,1193
(C22×S3)⋊4Q8 = C2×D6⋊Q8φ: Q8/C4C2 ⊆ Out C22×S396(C2^2xS3):4Q8192,1067
(C22×S3)⋊5Q8 = C2×C4.D12φ: Q8/C4C2 ⊆ Out C22×S396(C2^2xS3):5Q8192,1068
(C22×S3)⋊6Q8 = S3×C22⋊Q8φ: Q8/C4C2 ⊆ Out C22×S348(C2^2xS3):6Q8192,1185
(C22×S3)⋊7Q8 = C2×D63Q8φ: Q8/C4C2 ⊆ Out C22×S396(C2^2xS3):7Q8192,1372

Non-split extensions G=N.Q with N=C22×S3 and Q=Q8
extensionφ:Q→Out NdρLabelID
(C22×S3).1Q8 = (C22×C4).37D6φ: Q8/C2C22 ⊆ Out C22×S396(C2^2xS3).1Q8192,235
(C22×S3).2Q8 = (C2×C12).33D4φ: Q8/C2C22 ⊆ Out C22×S396(C2^2xS3).2Q8192,236
(C22×S3).3Q8 = M4(2).25D6φ: Q8/C2C22 ⊆ Out C22×S3484(C2^2xS3).3Q8192,452
(C22×S3).4Q8 = (C2×C12).290D4φ: Q8/C2C22 ⊆ Out C22×S396(C2^2xS3).4Q8192,552
(C22×S3).5Q8 = (C2×C12).56D4φ: Q8/C2C22 ⊆ Out C22×S396(C2^2xS3).5Q8192,553
(C22×S3).6Q8 = D6⋊(C4⋊C4)φ: Q8/C4C2 ⊆ Out C22×S396(C2^2xS3).6Q8192,226
(C22×S3).7Q8 = D6⋊C4⋊C4φ: Q8/C4C2 ⊆ Out C22×S396(C2^2xS3).7Q8192,227
(C22×S3).8Q8 = S3×C8.C4φ: Q8/C4C2 ⊆ Out C22×S3484(C2^2xS3).8Q8192,451
(C22×S3).9Q8 = C4⋊(D6⋊C4)φ: Q8/C4C2 ⊆ Out C22×S396(C2^2xS3).9Q8192,546
(C22×S3).10Q8 = D6⋊C46C4φ: Q8/C4C2 ⊆ Out C22×S396(C2^2xS3).10Q8192,548
(C22×S3).11Q8 = S3×C2.C42φ: trivial image96(C2^2xS3).11Q8192,222
(C22×S3).12Q8 = C2×S3×C4⋊C4φ: trivial image96(C2^2xS3).12Q8192,1060

׿
×
𝔽